Applying compound-specific isotope analysis to sites with low concentrations of 1,4-dioxane

Katharine North Morrison, Peter Bennett & Min-Ying (Jacob) Chu (Haley & Aldrich)
Ramon Aravena and Humam El Mugammar (University of Waterloo)
Christy Smith and Michael Hyman (North Carolina State University)
Michael Nickelsen (ECT2)

Motivation for this work

- Little is known about 1,4-dioxane (1,4-D) biodegradation at field sites
- SERDP-funded project in response to Statement of Need for cost-effective diagnostic methods for natural attenuation
- CSIA is uniquely powerful method for demonstrating biodegradation in the field, BUT:
 - 1. 1,4-D concentrations <100 μg/L are too low for conventional CSIA methods
 - 2. Variety of enrichment factors for 1,4-D are not well defined
 - 3. Range in isotopic composition of 1,4-D sources is not well described
 - 4. Interpretation of CSIA at a variety of field sites lacking

Phase I

- Phase I focus:
 - 1. Development of analytical method to perform CSIA on 1,4-D down to $^{-1-10}\,\mu g/L$
 - 2. Determination of enrichment factors (ε) of 1,4-D for different microbial cultures

FINAL REPORT

Extending The Applicability of Compound-Specific Isotope Analysis To Low Concentrations Of 1,4-Dioxane

SERDP Project ER-2535

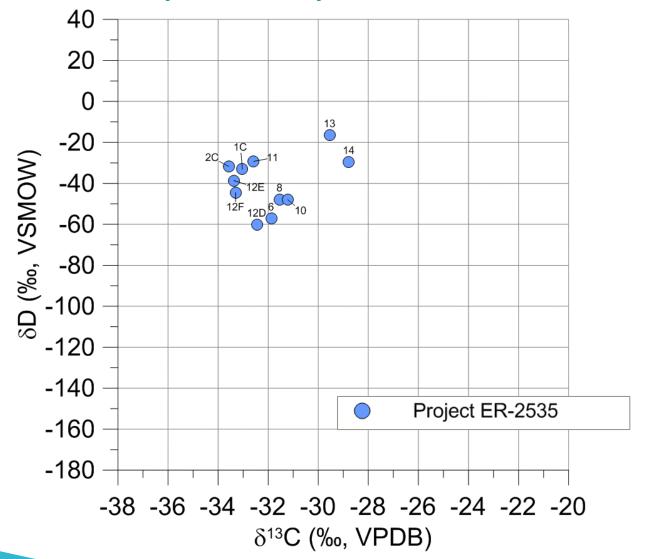
FEBRUARY 2017

Enrichment with Carbon-13 and Deuterium during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane

Peter Bennett,** * Michael Hyman, Christy Smith, Humam El Mugammar, Min-Ying Chu, Michael Nickelsen, Aravena

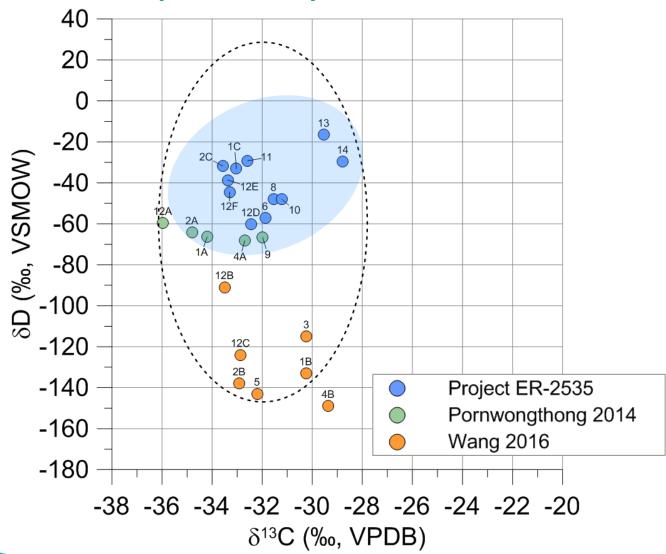
Phase II

- Phase II focuses on further development:
 - 1. Expand the database of isotopic composition of 1,4-D sources
 - 2. Add at least six additional case studies at field sites



Isotopic composition of 1,4-dioxane sources

- Analyzed 11 different neat 1,4-D sources from various manufacturers, bringing total to 23
- Methodology
 - Used two different methods: EA-IRMS and GC-IRMS
 - Results identical when purity was >99.5%
 - GC-IRMS results shown along with results published by others

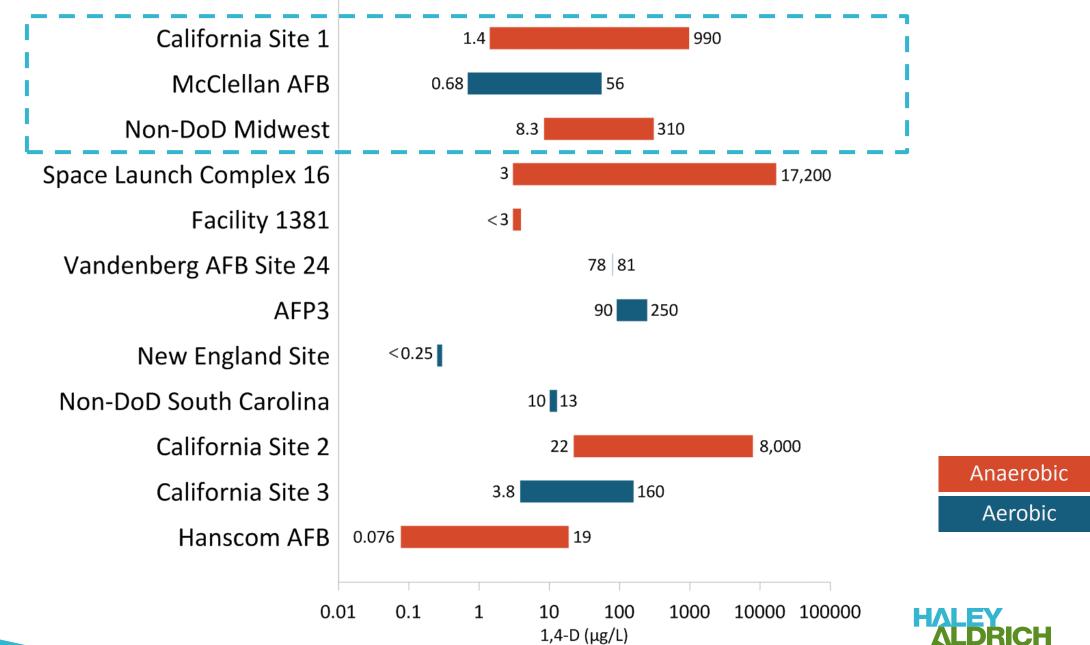

Source isotopic composition

NI-	B. d £ 4	\$120.0/	SD 0/	D - f
No.	Manufacturer	δ ¹³ C ‰	δD ‰	Reference
1A	Acros Organics	-34.2	-66	Pornwongthong, 2014
1B		-30.3	-133	Wang, 2016
1C		-33.0	-33	SERDP ER-2535, Phase II
2A	Alfa Aesar	-34.8	-64	Pornwongthong, 2014
2B		-32.9	-138	Wang, 2016
2C		-33.6	-32	SERDP ER-2535, Phase II
3	EMD 2013	-30.2	-115	Wang, 2016
4A	Fisher Scientific	-32.7	-68	Pornwongthong, 2014
4B		-29.4	-149	Wang, 2016
5	Fluka 2014	-32.2	-143	Wang, 2016
6	Honeywell	-31.9	-57	SERDP ER-2535, Phase II
8	J.T.Baker	-31.5	-48	SERDP ER-2535, Phase II
9	Mallinckrodt	-32.0	-67	Pornwongthong, 2014
10	Molecular Dimensions	-31.2	-48	SERDP ER-2535, Phase II
11	Restek	-32.6	-29	SERDP ER-2535, Phase II
12A	- Sigma-Aldrich	-36.0	-60	Pornwongthong, 2014
12B		-33.5	-91	Wang, 2016
12C		-32.9	-124	Wang, 2016
12D		-32.5	-60	SERDP ER-2535, Phase II
12E		-33.4	-39	SERDP ER-2535, Phase II
12F		-33.3	-45	SERDP ER-2535, Phase I
13	TCI America	-29.5	-17	SERDP ER-2535, Phase II
14	Ultra Scientific	-28.8	-30	SERDP ER-2535, Phase II

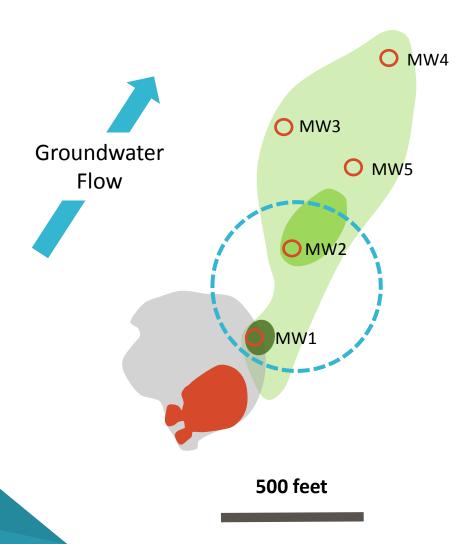
Source isotopic composition database

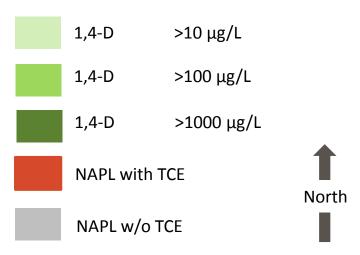
No.	Manufacturer	δ ¹³ C ‰	δD ‰	Reference
1A	Acros Organics	-34.2	-66	Pornwongthong, 2014
1B		-30.3	-133	Wang, 2016
1C		-33.0	-33	SERDP ER-2535, Phase II
2A	Alfa Aesar	-34.8	-64	Pornwongthong, 2014
2B		-32.9	-138	Wang, 2016
2C		-33.6	-32	SERDP ER-2535, Phase II
3	EMD 2013	-30.2	-115	Wang, 2016
4A	Fisher Scientific	-32.7	-68	Pornwongthong, 2014
4B		-29.4	-149	Wang, 2016
5	Fluka 2014	-32.2	-143	Wang, 2016
6	Honeywell	-31.9	-57	SERDP ER-2535, Phase II
8	J.T.Baker	-31.5	-48	SERDP ER-2535, Phase II
9	Mallinckrodt	-32.0	-67	Pornwongthong, 2014
10	Molecular Dimensions	-31.2	-48	SERDP ER-2535, Phase II
11	Restek	-32.6	-29	SERDP ER-2535, Phase II
12A	Sigma-Aldrich	-36.0	-60	Pornwongthong, 2014
12B		-33.5	-91	Wang, 2016
12C		-32.9	-124	Wang, 2016
12D		-32.5	-60	SERDP ER-2535, Phase II
12E		-33.4	-39	SERDP ER-2535, Phase II
12F		-33.3	-45	SERDP ER-2535, Phase I
13	TCI America	-29.5	-17	SERDP ER-2535, Phase II
14	Ultra Scientific	-28.8	-30	SERDP ER-2535, Phase II

Pornwongthong, P., 2014. Stable isotopic and molecular biological tools to validate bio-degradation of 1,4-dioxane, Ph.D. thesis, UCLA.


Wang, Y., 2016. Breakthrough in 2D-CSIA technology for 1,4-dioxane, Remediation, p.61-70.

Case studies

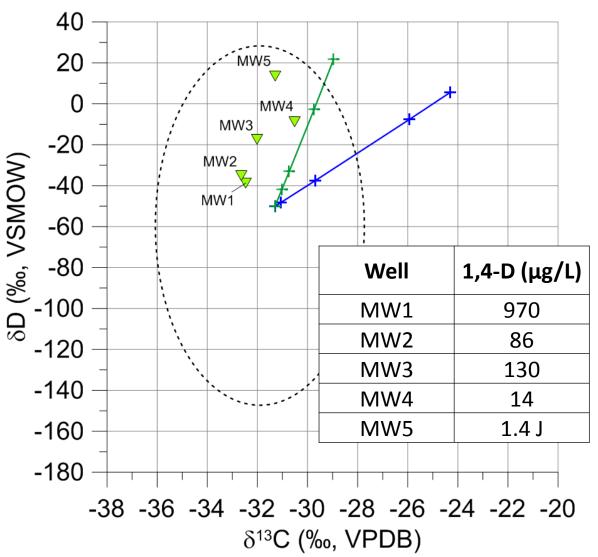

Eight additional sites analyzed in Phase II, for total of 12



California Site 1

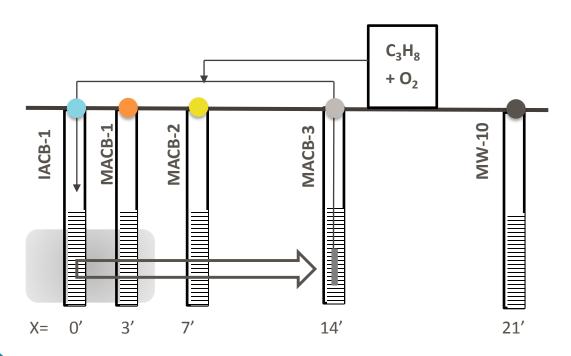
1,4-D and chloroethene plume with Cr (VI)

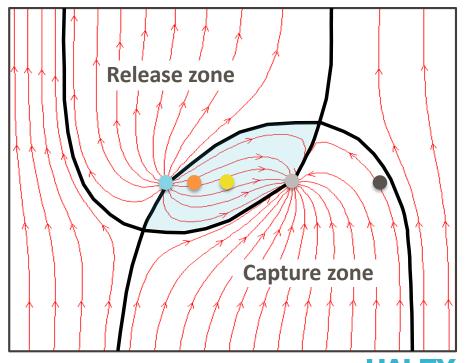
Anaerobic with possible shallow aerobic zones

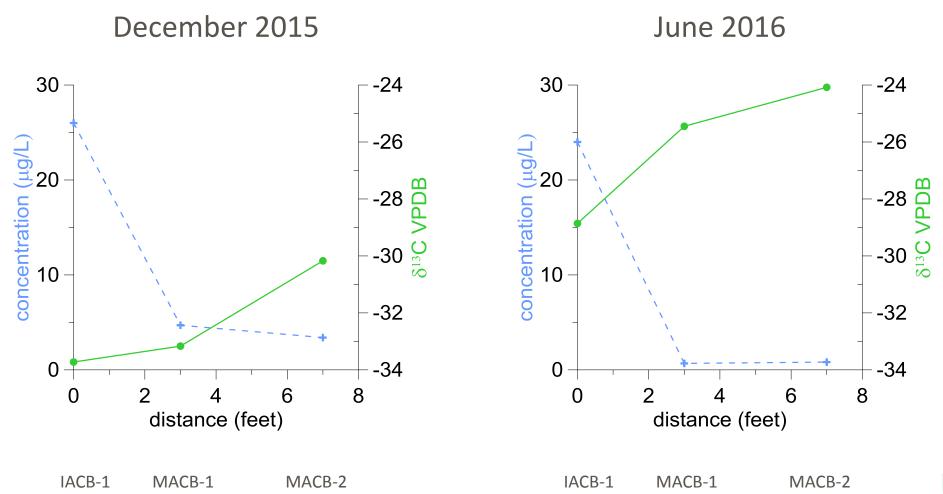


California Site 1

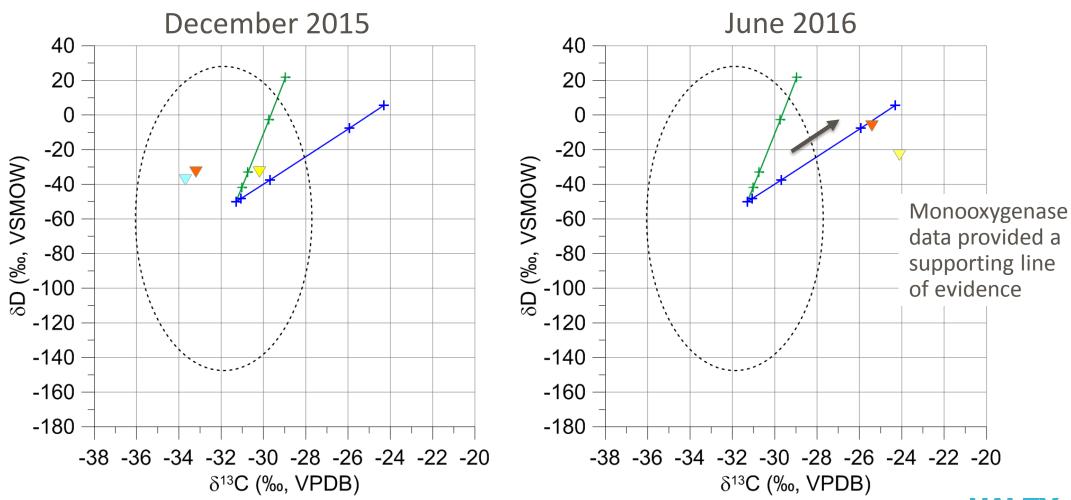
- Rayleigh degradation curves:
 - THF-grown culture
 - Propane-grown culture
- Fractionation not that great given concentration decrease
- Dual isotope trend indicates biodegradation


Bennett et. al., 2018. Enrichment with Carbon-13 and Deuterium during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane. Environmental Science & Technology Letters 5(3): 148-153



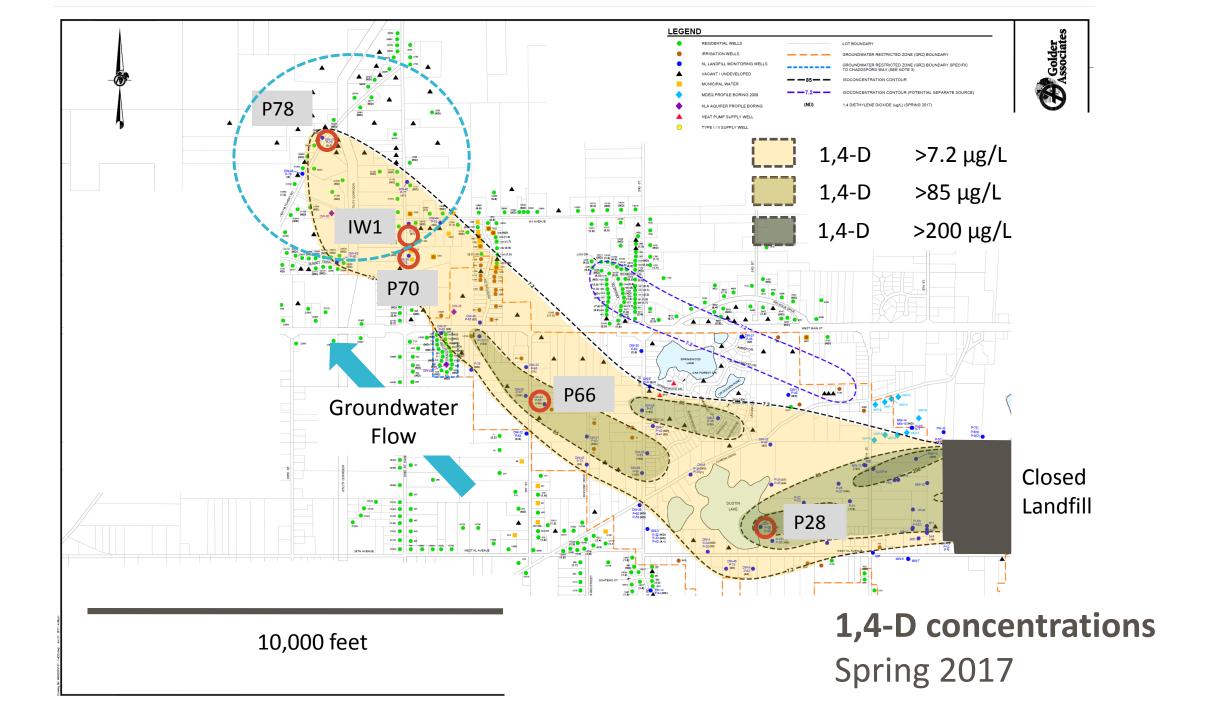

McClellan AFB

- Maintenance depot 1939-2001 with waste pits and trenches
- Recirculation with propane and oxygen created an in situ bioreactor
- Propane and oxygen injection began Oct 2015



Enrichment in δ^{13} C in samples from treatment zone

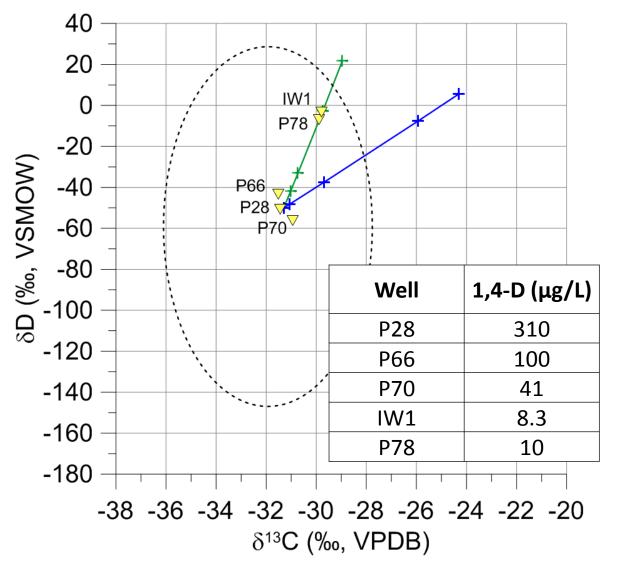
Dual isotope plots from treatment zone



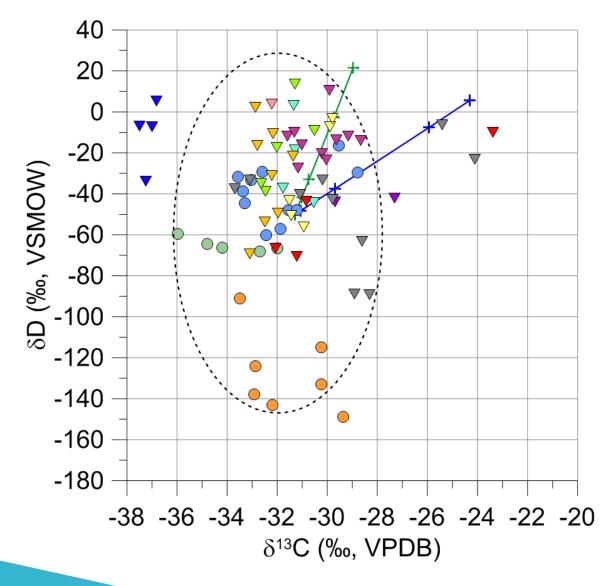
▼ IACB-1 ▼ MACB-1 ▼ MACB-2

Non-DoD Midwest site

- Landfill accepted industrial waste 1968-1979
- THF is a co-contaminant
- Treatment: injected groundwater infused with oxygen and propane for ~four months prior to CSIA sampling



Midwest site


- Extensive fractionation at injection well IW1 and leading edge of plume P78
- Upgradient locations consistent with 1,4-D source
- THF-grown culture

Bennett et. al., 2018. Enrichment with Carbon-13 and Deuterium during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane. Environmental Science & Technology Letters 5(3): 148-153

Isotopic composition of 1,4-dioxane: Source and groundwater samples

- ▼ Hanscom AFB
- South Carolina
- ▼ McClellan AFB
- ▼ Cape Canaveral
- ▼ VAFB Site 24
- ▼ AFP3
- ▼ California Site 1
- ▼ New England Site
- ▼ Midwest
- ▼ California Site 3
- Wang 2016
- Pornwongthong 2014
- ER-2535
- eC=-5.6; eH=-169
- eC=-2.4; eH=-19

What we've learned:

- High variability in 1,4-D sources → high variability in groundwater
- For successful CSIA field implementation:
 - Demonstrate enrichment in both δ^{13} C and δ D
 - Multiple samples needed to demonstrate degradation
 - Analyze samples at or near the source
- Natural attenuation assessments should be supported by multiple lines of evidence
 - Analysis of monooxygenase biomarkers is valuable supporting information

What we need to learn:

- 2D enrichment factors for other microbes, e.g., CB1190
- Characterization of natural degradation and isotopic enrichment under anaerobic conditions

Field site sampling collaborators

- ESTCP Project 201730: **Tony Danko** (NAVFAC), **Dave Adamson** (GSI Environmental, Inc.), and **John Wilson** (Scissortail Environmental Solutions LLC)
- Hanscom AFB: Kinshuk Shroff, Versar
- AFP3: Rebecca Mora, AECOM

Acknowledgements

- SERDP Grant ER-2535 (Bennett): CSIA method development
- SERDP Grant ER-2303 (Hyman): Degradation reactions performed at NCSU
- NSERC Discovery Grant (Aravena): CSIA of 1,4-D in samples from degradation reactions
- AFCEC FA8903-13-C0002 (Chu): Field Demonstration at Former McClellan AFB
- Dr. Andrea Leeson and Cara Patton at SERDP
- Dr. Hunter Anderson at AFCEC
- In-kind support from ECT2 (Nickelsen and Schmitz)

Thank you!

Katharine Morrison: kmorrison@haleyaldrich.com

Peter Bennett: pbennett@haleyaldrich.com

