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Pseudo-1st order degradation rates for 1,4-dioxane
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Degradation process half-life (d) experimental conditions reference:

aerobic cometabolic

0.45
Bio-stimulation pilot test using 

groundwater recirculation
Chu et al., 2018

19.3 to 33
Bio-augmentation pilot test with 

propane sparging
Lippincott et al., 2015

natural attenuation

600
Median of 22 sites
(Site-wide values)

Adamson et al., 2015

1,500
Median of 131 wells
(well-specific values)
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Adamson, D. T., Anderson, R. H., Mahendra, S., & Newell, C. J. (2015). Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. 
Environmental Science and Technology, 49(11), 6510–6518. https://doi.org/10.1021/acs.est.5b00964



Rayleigh equation for estimating % degradation

• Simplified form: 13Ct= 13Co+εlnf

– 13Ct = isotope ratio in sample at time t

• this is what we measure in well samples

– 13Co = isotope ratio at time t=0

• this is the isotope ratio before biodegradation 
begins (source term)

– ε is the “enrichment factor”

• Degradation reactions in laboratory

– f is the “fraction remaining” 

• (1-f)x100 = %degradation

• % degradation can be calculated if 13Co,
ε , and 13Ct are know
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=-2.7‰

=-4.7‰



Enrichment trends from reactions with pure cultures

Enrichment factors (ε) are distinct for 
different reaction conditions:

Dual-isotope plots show distinct slope for 
each reaction condition:

strain substrate εC (‰) εH (‰)

Mycobacterium 
1A*

propane -2.0 -26

R. rhodochrous**
ATCC 21198

propane -2.7±0.3 -21±2

isobutane -2.5±0.3 -28±6

P. tetrahydrofuran-
oxidans K1**

THF -4.7±0.9 -147±22
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**Bennett, P., Hyman, M., Smith, C., El Mugammar, H., Chu, M.-Y., Nickelsen, M., & Aravena, R. (2018). Enrichment of carbon-13 and deuterium 
during monooxygenase-mediated biodegradation of 1,4-dioxane. Environmental Science & Technology Letters

*Bennett, P. & Aravena, R. (2017). Extending the application of compound-specific isotope analysis to low 

concentrations of 1,4-dioxane. SERDP ER-2535 Final Report.
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AFCEC-funded pilot test of 
GW recirculation with propane and
oxygen injection to stimulate aerobic
cometabolic biodegradation of 1,4-dioxane
(Chu et al., 2018) 

X=     0’         3’           7’                        14’                              21’

Bioremediation pilot test, McClellan AFB



Growth of Mycobacterium due to propane injection
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Mycobacterium
strains are 
known to
degrade 1,4-
dioxane.  
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Samples collected for CSIA

(δ13C and δ2H of 1,4-dioxane)

on day 90 and day 270

CSIA on 1,4-dioxane during biodegradation



Enrichment was smaller than anticipated at MACB-1
Day 90 IACB-1 MACB-1 MACB-2

1,4-D (µg/L) 26 3.6 4.2

residual 1,4-D (f) 1 0.14 0.16

δ13C measured (‰) -33.7 -33.2 -30.2

δ13C expected (‰) -29.8 -30.0

Day 270

1,4-D (µg/L) 24 0.68 0.82

residual 1,4-D (f) 1.00 0.028 0.034

δ13C measured (‰) -28.9 -25.4 -24.1

δ13C expected (‰) -21.8 -22.1
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Expected δ13C values calculated from Rayleigh equation and 

microcosm-based enrichment factor for Mycobacterium 1A: -2.0 ‰



Masking of isotopic enrichment

• Can occur from:  

– Variations in isotopic composition of source 
material

– Heterogeneity/well blending can mask isotope 
effects (Section 4.5 of EPA Guidance)→

• Some degradation pathways may have small 
isotopic enrichment

• The potential for “false negatives” from CSIA 
is an important consideration for assessing 
the fate of 1,4-dioxane in groundwater
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How heterogeneity can mask enrichment (EPA, 2008)

Hypothetical scenario: 
degradation in shallow plume

Depletion in heavy isotope with 
increased degradation can occur:
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Simulations of heterogeneity

Hypothetical scenarios:
1: no heterogeneity (yellow wells)
2: heterogeneity (blue wells)

Modeling Method (BIOCHLOR-ISO)
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• Scenario 1 (degradation only) 

– model degradation using published 
values for ԐC & ԐH

• Scenario 2: (degradation + 
heterogeneity)

– assume no degradation for the 
“bottom” of the plume

– Use mixing equations and Scenario 1 
output to calculate CSIA results at each 
well for Scenario 2 



Smaller enrichment factors – Scenario 1
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GW Velocity = 1 ft/d 

Half Life = 1.7 yr

Log(Koc) = 1.24

R = 1.07

Initial 13C = -30‰

Initial 2H = -33.1‰

13C enrichment factor = -2.7

2H enrichment factor = -21 1,4-D concentration



Smaller enrichment factors – Scenario 2
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GW Velocity = 1 ft/d 

Half Life = 1.7 yr

Log(Koc) = 1.24

R = 1.07

Initial 13C = -30‰

Initial 2H = -33.1‰

13C enrichment factor = -2.7

2H enrichment factor = -21
1,4-D concentration



Larger enrichment factors – Scenario 2
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GW Velocity = 1 ft/d 

Half Life = 1.7 yr

Log(Koc) = 1.24

R = 1.07

Initial 13C = -30‰

Initial 2H = -33.1‰

13C enrichment factor = -4.7

2H enrichment factor = -147

1,4-D concentration



Implications for fate and transport assessments

• At sites where 1,4-dioxane degradation is occurring, it may be difficult to 
observe isotopic enrichment

• Quantitative estimates of degradation based on CSIA are likely to be 
underestimates in most cases

• Dual isotope trends are expected to be an important line of evidence for 
degradation of 1,4-dioxane 

• Likelihood of successful CSIA applications increase with:

– High resolution sampling

– Knowledge of spatial and temporal redox conditions

– Other supporting lines of evidence (advanced microbial tools, etc.)
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Example site

• Rayleigh degradation curves:

– THF-grown culture

– Propane-grown culture
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Bennett et. al., 2018. Enrichment with Carbon-13 and Deuterium 
during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane. 
Environmental Science & Technology Letters 5(3): 148-153

Well 1,4-D (µg/L)
MW1 970
MW2 86
MW3 130
MW4 14
MW5 1.4 J



Conclusions

• Dual isotope plot is critical for applying CSIA toward:

– performance monitoring of remediation systems, 

– MNA assessments

– fate and transport evaluations

• While CSIA is a powerful line of evidence for degradation, it may be 
difficult to quantify degradation rates based on CSIA evidence alone

• Absence of isotopic enrichment should not be used to infer absence 
of degradation.
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